High-reliability, Pb-free, Halogen-free Solder


Reading time ( words)

Abstract

With increasing demand for the use of Pb-free solder materials coupled with an increasing requirement for halogen-free solder paste formulations, some market sectors are experiencing several challenges using standard SnAgCu (SAC) halide-free solder materials, especially in electronic assemblies for automotive products experiencing harsh operating environments such as high operating temperatures, increased thermal cycling conditions, high levels of vibration and contact with liquids such as moisture and lubricants. For example, in automotive "under the hood" conditions, temperatures easily exceed 125°C and can cycle lower than -20°C. The reliability required to survive these harsh conditions is often greater than standard SAC solders can provide. In this paper, the performance of a specifically designed Pb-free solder alloy for increased reliability in high-temperature thermal cycling is discussed.

Reliability can also be impacted by no-clean post reflow residues adjacent to solder joints. These may potentially interact with other surface materials causing corrosion issues or lower insulation resistance. With halogen-free electronic assemblies arguably becoming more favourable than halide-free–even within some automotive manufacturers–solder paste manufacturers are now faced with the challenge of formulating halogen-free fluxes which can also demonstrate high reliability. While removing the halogen from a material is not difficult, replacing it with an activator set that can deliver a wide reflow process window whilst retaining or increasing reliability is a significant challenge. The paper also documents the challenges and breakthroughs in developing halogen-free or zero-halogen solder fluxes that are compatible with the Pb-free alloy specifically designed for higher reliability.

Introduction

Reliability testing of standard SAC-based alloys as a direct comparison to Pb-containing materials as a response to the implementation of the RoHS directive during the mid-2000s has been well documented. The results of the testing broadly concluded that little differences could be seen between SAC and SnPb alloys. Analysis of the data showed that, depending on the test vehicle configuration and the test conditions in some cases, SAC alloys gave improved reliability over SnPb alloys and in other examples the reverse result occurred. This testing focused on environmental conditions representative of the bulk of the electronics industry at that moment in time (-40°C to +125°C). 

Read the full article here.


Editor's Note: This article originally appeared in the November 2014 issue of SMT Magazine.

Share

Print


Suggested Items

SMTAI 2019: Chris Bastecki on Low-temperature Solder Challenges and Products

10/14/2019 | Real Time with...SMTAI
Chris Bastecki, director of global PCB assembly at Indium Corporation, discussed challenges of low-temperature solder and the company's new product, Durafuse LT, which provides novel properties and reliability.

Real Time with... SMTAI 2019 Video Interviews

10/09/2019 | Real Time with...SMTAI
The SMTA International Conference and Exhibition 2019, which took place September 22–26, 2019, at the Donald E. Stephens Convention Center in Rosemont, Illinois, concluded successfully. For those of you who were not able to make it to the show, catch our video interviews with the movers and shakers of the electronics industry. We've updated our video presentation for a better experience for our users, so check it out!

SMTAI 2019: Happy Holden’s On-the-Scene Report

10/03/2019 | Happy Holden, I-Connect007
Last week concluded the 2019 SMTAI conference in Rosemont, Illinois. Overall, I think the show was successful and covered all aspects of SMT processes.



Copyright © 2019 I-Connect007. All rights reserved.