Novel High-Performance Substrate for Stretchable Electronics


Reading time ( words)

Stretchable circuits are an evolving branch of electronics interconnection technology and the subject of growing interest to product developers seeking to provide novel wearable electronic solutions for consumer and medical markets. Such circuits are designed and manufactured using resilient materials which allow them to expand and contract with the movements of the user or to conform to nonplanar surfaces making possible a wide range of innovative and fanciful electronic interconnection devices. Obviously, the material used is a key element in making a stretchable circuit.

There are a range of different types of thermoplastic polymers available in film form that can be effectively stretched; however, once stretched beyond their elastic limit the material deforms to a new length greater than that which was designed.

There are as well elastomeric materials, such as urethanes, which have seen use in the manufacture of circuits which can be stretched and return to their original length. These materials tend to be opaque, which limits the scope of possibility for their use. A new transparent, high-performance thermal setting stretchable material could open doors to a range of new and innovative products.

New stretchable material characteristics

The new material is capable of stretching to 150% of the original length without hysteresis. (Figure 1 provides a comparison of stress-strain plots of the new material compared with thermoplastic PEN.)

stretchable_fig1.jpg

Another key attribute of the material is its ability to reliably return to the original length even when stretched numerous times, as will likely be required in numerous future applications. The new material excels in this regard.

The mechanical and thermal properties of the new material are superior in many important areas including total elongation and adhesion both to copper foil and FR-4 laminate. It is also unique in that is has no melt point making it amenable to soldering with higher temperature lead free solders.

Read The Full Article Here

Editor's Note: This article originally appeared in the June 2015 issue of The PCBMagazine.

Share

Print


Suggested Items

EIPC Technical Snapshot: 5G and Loss Minimisation

03/26/2021 | Pete Starkey, I-Connect007
Bringing a specialised technical area into sharp focus, this month’s topic was “5G and the understanding of loss minimisation at the PCB level,” with papers on dielectric material, copper foil, and modelling solutions. The webinar was moderated by EIPC board member Paul Waldner managing director of Multiline International Europa, who admitted that he had managed to get a haircut especially for the occasion!

PCB Requirements for E-Mobility

03/23/2021 | I-Connect007 Editorial Team
Nolan Johnson, Barry Matties, and Happy Holden speak with Christian Klein, section manager for PCBs in the automotive electronics division, about Bosch’s recent presentation on PCB requirements of the future in regard to automotive and electro mobility trends and challenges.

With Pluritec, it’s All About Automation

03/23/2021 | Real Time with...IPC
Lino Sousa, vice president of sales with Pluritec, reviews the company’s specialist equipment ranges and discusses the benefits of automation of drilling, solder mask application and wet processing in small-batch, quick-turnaround PCB production.



Copyright © 2021 I-Connect007. All rights reserved.