All About Flex: Plated Through-holes in Flexible Circuits


Reading time ( words)

There is probably no more important feature than the plated through-hole (also called via or via hole) with regard to the reliability and integrity of a flexible circuit. The through-hole provides electrical connection between insulated layers and enables electrical functionality on double-sided and multilayer flexible circuits.

There are a number of methods that a flex circuit manufacturer may use when generating a via hole.  For example, one can create through-holes on a panel with no circuit patterns defined, or one can insert the through-holes after the circuit traces have been imaged and etched. There are advantages and disadvantages for both situations, but the basics of creating a through-hole are the same.

The first step in via formation is to create a hole through the laminate. The hole can be created by mechanical drilling, laser drilling or punching. Once the hole has been drilled, an adhesive-based laminate will look similar to the diagram below:

Fig1.JPGFigure 1: Through-hole, side view.

Figure 1 depicts the case where a laminate consisting of copper foil, adhesive, dielectric, adhesive and copper foil are used. Adhesiveless laminates are also very popular and are produced with a variety of technologies that bond copper to dielectrics sans adhesive.

Electroplating is a process where metal ions are bonded to a metal surface. The process requires a voltage potential between a copper source (anode) and the plating target (copper circuit). Both the anode and copper circuit are immersed in a copper sulphate solution with an applied voltage potential. This promotes ion flow from the anode to the cathode (the circuit). Areas of a circuit panel with a voltage potential will get plated, so any part of a copper circuit that is electrically isolated will not get plated. Since copper layers are separated by dielectric materials, and there is no electrical charge going through the through-hole, electroplating between layers is not possible. In order to allow electroplating, a conductive “bridge” must be coated over the insulating layer.

The two most common methods for creating that conductive bridge are:

  • Electroless copper plating
  • Shadow plating

Share

Print


Suggested Items

PCB Technologies Expands Capabilities

04/16/2021 | Nolan Johnson, I-Connect007
Nolan Johnson speaks with Arik Einhorn and Yaad Eliya of Israel-based PCB Technologies about how they’ve increased their capabilities down to 1 mil line and space to better support their customers from the military, aerospace, and medical markets.

A Show Full of Opportunities

04/16/2021 | Tara Dunn, Averatek
Looking back to my notes from IPC APEX 2020, I noticed one of my comments: There were so many interesting sessions that I often found myself in the position of choosing between several that I wanted to attend in the same timeslot. This year was not any different in that regard. I am purposely glossing over the fact that I, like many of my friends, missed the camaraderie and opportunity to catch up in person while attending these technical sessions, and I look forward to being able to do that next year.

EIPC Technical Snapshot: 5G and Loss Minimisation

03/26/2021 | Pete Starkey, I-Connect007
Bringing a specialised technical area into sharp focus, this month’s topic was “5G and the understanding of loss minimisation at the PCB level,” with papers on dielectric material, copper foil, and modelling solutions. The webinar was moderated by EIPC board member Paul Waldner managing director of Multiline International Europa, who admitted that he had managed to get a haircut especially for the occasion!



Copyright © 2021 I-Connect007. All rights reserved.